2016

**P. Rai**,**K. Sargsyan**,**H. Najm**, M. R. Hermes, and**S. Hirata**[a SciDAC QUEST collaboration],

(submitted for publication, 2016),

“Low-rank canonical-tensor decomposition of potential energy surfaces: Application to grid-based diagrammatic vibrational Green's function theory.”**S. Hirata**, K. Gilliard, X. He, M. Keçeli, J. Li, M. A. Salim, O. Sode, and K. Yagi,

(submitted for publication, 2016),

“Ab initio ice, dry ice, and liquid water.”- B. Busemeyer, M. Dagrada, S. Sorella, M. Casula, and
**L. K. Wagner**,

(submitted for publication, 2016),

“Competing collinear magnetic structures in superconducting FeSe by first principles quantum Monte Carlo calculations.” - X. Yu, D. Pekker and
**B. K. Clark**,

(submitted for publication, 2016),

“Finding matrix product state representations of highly-excited eigenstates of many-body localized Hamiltonians.” - B. Sandhoefer and
**G. K.-L. Chan**,

(submitted for publication, 2016),

“Density matrix embedding theory for interacting electron-phonon systems.” - J. McClain, J. Lischner, T. Watson, D. A. Matthews, E. Ronca, S. G. Louie, T. C. Berkelbach, and
**G. K.-L. Chan**,

(submitted for publication, 2016),

“Spectral functions of the uniform electron gas via coupled-cluster theory and comparison to the*GW*and related approximations.” **L. K. Wagner**and**D. M. Ceperley**,

(submitted for publication, 2016),

“Discovering correlated fermions using quantum Monte Carlo.”- D. Pekker and
**B. K. Clark**,

(submitted for publication, 2015),

“Encoding the structure of many-body localization with matrix product operators.” **B. K. Clark**and**H. J. Changlani**,

(submitted for publication, 2014),

“Stochastically projecting tensor networks.”- C. M. Johnson, A. E. Doran, J. Zhang, E. F. Valeev, and
**S. Hirata**,

J. Chem. Phys. (in press, 2016),

“Monte Carlo explicitly correlated second-order many-body perturbation theory.” - K. Kumar,
**H. Changlani**,**B. K. Clark**, and E. Fradkin,

Phys. Rev. B**94**, 134410 (2016),

“Numerical evidence for a chiral spin liquid in the XXZ antiferromagnetic Heisenberg model on the kagome lattice at*m*=2/3 magnetization.” **H. J. Changlani**, N. M. Tubman, and T. L. Hughes,

Sci. Rep.**6**, 31897 (2016),

“Charge density waves in disordered media circumventing the Imry-Ma argument.”**S. Hirata**, T. Shiozaki, C. M. Johnson, and J. D. Talman,

Mol. Phys. (published online, 2016) [Sanibel Symposium Issue],

“Numerical solution of the Sinanoglu equation using a multicenter radial-angular grid.”- A. Holmes,
**H. J. Changlani**, and C. J. Umrigar,

J. Chem. Theory Comput.**12**, 1561 (2016),

“Efficient heat-bath sampling in Fock space.” - A. Y. Sokolov and
**G. K.-L. Chan**,

J. Chem. Phys.**144**, 064102 (2016),

“A time-dependent formulation of multi-reference perturbation theory.” - B.-X. Zheng and
**G. K.-L. Chan**,

Phys. Rev. B**93**, 035126 (2016),

“Ground-state phase diagram of the sqaure lattice Hubbard model from density matrix embedding theory.” - H. Shapourian and
**B. K. Clark**,

Phys. Rev. B**93**, 035125 (2016),

“Variational identification of a fractional Chern insulator in an extended Bose-Hubbard model.” - B. C. Clay III, M. Holzmann,
**D. M. Ceperley**, and M. A. Morales,

Phys. Rev. B**93**, 035121 (2016),

“Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces.”

2015

- J. Yu,
**L. K. Wagner**, and E. Ertekin,

J. Chem. Phys.**143**, 224707 (2015),

“Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: Case study of zinc selenide and zinc oxide.” **L. K. Wagner**

Phys. Rev. B (Rapid Communications)**92**, 161116(R) (2015),

“Ground state of doped cuprates from first-principles quantum Monte Carlo calculations.”- J. Sun,
**B. K. Clark**, S. Torquato, and R. Car

Nat. Commun.**6**, 8156 (2015),

“The phase diagram of high-pressure superionic ice.” - X. Chen, X. Yu,
**B. K. Clark**, and E. Fradkin

Phys. Rev. B**92**, 214204 (2015),

“Many-body localization transition in Rokhsar-Kivelson-type wave functions.” - J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik,
**G. K.-L. Chan**, C.-M. Chung, Y. Deng, M. Ferrero, T. M. Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis, N. V. Prokof'ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov, L. F. Tocchio, I. S. Tupitsyn, S. R. White,**S. Zhang**, B.-X. Zheng, Z. Zhu, and E. Gull,

Phys. Rev. X**5**, 041041 (2015),

“Solutions of the two dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms” - Y. Yang, I. Kylänpää, N. M. Tubman, J. T. Krogel, S. Hammes-Schiffer, and
**D. M. Ceperley**,

J. Chem. Phys.**143**, 124308 (2015),

“How large are nonadiabatic effects in atomic and diatomic systems?” - H. Shi, S. Chiesa, and
**S. Zhang**,

Phys. Rev. A**92**, 033603 (2015),

“Ground-state properties of strongly interacting Fermi gases in two dimensions.” - T. Watson, Jr. and
**G. K.-L. Chan**,

J. Chem. Theory Comput. (published online in 2015),

“Correct quantum chemistry in a minimal basis from effective Hamiltonians.” - P. Rosenberg, S. Chiesa, and
**S. Zhang**,

J. Phys.: Condens. Matter**27**, 225601 (2015),

“FFLO order in ultra-cold atoms in three-dimensional optical lattices.” - F. Ma, W. Purwanto,
**S. Zhang**, and H. Krakauer

Phys. Rev. Lett.**114**, 226401 (2015),

“Quantum Monte Carlo calculations in solids with downfolded Hamiltonians.” - G. H. Booth and
**G. K.-L. Chan**,

Phys. Rev. B.**91**, 155107 (2015),

“Spectral functions of strongly correlated extended systems via an exact quantum embedding.” - T. Yamada and
**S. Hirata**,

J. Chem. Phys.**143**, 114112 (2015),

“Singlet and triplet instability theorems.” - M. R. Hermes and
**S. Hirata**,

J. Chem. Phys.**143**, 102818 (2015) [Special Topic Issue on “Advanced Electronic Structure Methods for Solids and Surfaces”],

“Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves.” - O. M. Sule,
**H. J. Changlani**, I. Maruyama, and**S. Ryu**(equal contribution from first two authors),

Phys. Rev. B**92**, 075128 (2015),

“Determination of Tomonaga-Luttinger parameters for two-component liquid.” **H.J. Changlani**, H. Zheng, and**L. K. Wagner**,

J. Chem. Phys.**143**, 102814 (2015) [Special Topic Issue on “Advanced Electronic Structure Methods for Solids and Surfaces”],

“Density matrix based determination of low energy model Hamiltonians from ab initio wavefunctions.”- S. Ghosh,
**H.J. Changlani**, and C. L. Henley,

Phys. Rev. B**92**, 064401 (2015) [PRB Editor's Suggestion],

“Schwinger Boson mean field perspective on emergent spins in diluted Heisenberg antiferromagnets.” - Y. Zhuang,
**H. J. Changlani**, N. M. Tubman, and T. L. Hughes,

Phys. Rev. B**92**, 035154 (2015),

“Phase diagram of the Z_{3}parafermionic chain with chiral interactions: An entanglement analysis.” **S. Hirata**, M. R. Hermes, J. Simons, and J. V. Ortiz,

J. Chem. Theory Comput.**11**, 1595-1606 (2015),

“General-order many-body Green's function method.”**H. J. Changlani**and A. M. Läuchli,

Phys. Rev. B (Rapid Communications)**91**, 100407(R) (2015),

“Trimerized ground state of the spin-1 Heisenberg antiferromagnet on the kagome lattice.”

2014

- S. Y. Willow, K. S. Kim, and
**S. Hirata**,

Phys. Rev. B (Rapid Communications)**90**, 201110(R) (2014),

“Brueckner-Goldstone quantum Monte Carlo for correlation energies and quasiparticle energy bands of one-dimensional solids.” - C. L. Henley and
**H. J. Changlani**,

J. Stat. Mech.**2014**(11), 11002 (2014),

“Density-matrix based numerical methods for discovering order and correlations in interacting systems.” - A. Mollabashi, M. Nozaki,
**S. Ryu**, and T. Takayanagi,

J. High Energy Phys.**2014**(3), 98 (2014),

“Holographic geometry of cMERA for quantum quenches and finite temperature.” **L. K. Wagner**and**P. Abbamonte**,

Phys. Rev. B**90**, 125129 (2014),

“The effect of electron correlation on the electronic structure and spin-lattice coupling of the high-Tc cuprates: quantum Monte Carlo calculations.”- J. Yang, W. Hu, D. Usvyat, D. Matthews, M. Schuetz, and
**G. K.-L. Chan**,

Science**345**(6197) 640 (2014),

“Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy.” **S. Hirata**, K. Gilliard, X. He, J. Li, and O. Sode,

Acc. Chem. Res.**47**, 2721 (2014),

“Ab initio molecular crystal structures, spectra, and phase diagrams.” (Account)- R. C. Clay, J. B. McMinis, J. M. McMahon, C. Pierleoni,
**D. M. Ceperley**, and M. A. Morales,

Phys. Rev. B**89**, 184106 (2014),

“Benchmark of exchange-correlation functionals for high pressure hydrogen using quantum Monte Carlo.” - Q. Chen, G. H. Booth, S. Sharma, G. Knizia, and
**G. K.-L. Chan**,

Phys. Rev. B**89**, 165134 (2014),

“Intermediate phases of the Hubbard honeycomb model.” - H. Shi, C. A. Jiménez-Hoyos, R. Rodriguez-Guzmán, G. E. Scuseria, and
**S. Zhang**,

Phys. Rev. B**89**, 125129 (2014),

“Symmetry-projected Wave Functions in Quantum Monte Carlo Calculations.” - H. Nguyen, H. Shi, J. Xu, and
**S. Zhang**,

Comput. Phys. Commun.**185**, 3344 (2014),

“CPMC-Lab: A Matlab package for constrained path Monte Carlo calculations.” - Z. Kou and
**S. Hirata**,

Theor. Chem. Acc.**133**, 1487 (2014),

“Finite-temperature full configuration interaction.” - M. A. Morales, R. Clay, C. Pierleoni, and
**D. M. Ceperley**,

Entropy 2014,**16**(1), 287-321,

“First principles methods: A perspective from quantum Monte Carlo.” **S. Hirata**, X. He, M. R. Hermes, and S. Y. Willow,

J. Phys. Chem. A**118**, 655-672 (2014),

“Second-order many-body perturbation theory: An eternal frontier.” (Feature Article)- X. He,
**S. Ryu**, and**S. Hirata**,

J. Chem. Phys.**140**, 024702 (2014),

“Finite-temperature second-order many-body perturbation and Hartree-Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers.” - S. Y. Willow and
**S. Hirata**,

J. Chem. Phys.**140**, 024111 (2014),

“Stochastic, real-space, imaginary-time evaluation of third-order Feynman-Goldstone diagrams.” **L. K. Wagner**,

Int. J. Quantum Chem.**114**, 94 (2014),

“Quantum Monte Carlo for*ab initio*calculations of energy-relevant materials.” (Perspective)

2013

**S. Zhang**,

A chapter in Emergent Phenomena in Correlated Matter Modeling and Simulation Vol. 3, edited by E. Pavarini, E. Koch, and U. Schollwock, Julich, 2013,

“Auxiliary-Field Quantum Monte Carlo for Correlated Electron Systems.”- T. Yamada, R. Brewster, and
**S. Hirata**,

J. Chem. Phys.**139**, 184107 (2013),

“Asymptotic expansion of two-electron integrals and its application to Coulomb and exchange lattice sums in metallic, semimetallic, and nonmetallic crystals.” - S. Chiesa and
**S. Zhang**,

Phys. Rev. A**88**, 043624 (2013),

“Phases of attractive spin-imbalanced fermions in square lattices.” - J. Li, O. Sode, G. A. Voth, and
**S. Hirata**,

Nat. Commun.**4**, 2647 (2013),

“A solid-solid phase transition in carbon dioxide at high pressures and intermediate temperatures.” - F. Ma,
**S. Zhang**, and H Krakauer,

New J. Phys.**15**, 093017 (2013),

“Excited state calculations in solids by auxiliary-field quantum Monte Carlo.” - J. Xu, S. Chiesa, E. J. Walter, and
**S. Zhang**,

J. Phys.: Condens. Matter**25**, 415602 (2013),

“Magnetic order in the repulsive Fermi-Hubbard model in three-dimensions and the crossover to two-dimensions.” - H. Shi and
**S. Zhang**,

Phys. Rev. B**88**, 125132 (2013),

“Symmetry in auxiliary-field quantum Monte Carlo calculations.” - S. Y. Willow, M. R. Hermes, K. S. Kim, and
**S. Hirata**,

J. Chem. Theo. Comput.**9**4396-4402 (2013),

“Convergence acceleration of parallel Monte Carlo second-order many-body perturbation calculations using redundant walkers.” **S. Hirata**and X. He,

J. Chem. Phys.**138**, 204112 (2013),

“On the Kohn-Luttinger conundrum.”- S. Y. Willow, K, S. Kim, and
**S. Hirata**,

J. Chem. Phys.**138**, 164111 (2013),

“Stochastic evaluation of second-order Dyson self-energies.”

2012

- G. H. Booth and
**G. K.-L. Chan**,

J. Chem. Phys.**137**191102 (2012),

“Communication: Excited states, dynamic correlation functions and spectral properties from full configuration interaction Monte Carlo.” - M. Nozaki,
**S. Ryu**, and T. Takayanagi,

J. High Enegy Phys.**10**193 (2012),

“Holographic geometry of entanglement renormalization in quantum field theories.”

Financial support of this project is provided through Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences under award number DE-FG02-12ER46875.

© 2013 Predictive Computing. All rights reserved.